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A CLASS OF COMPOSITE LOADS FOR AN INELASTIC MATERIAL 

A. F. Revuzhenko UDC 539.37 

In solid mechanics a considerable role is played by flow, which in a certain 
sense is the simplest form. In hydrodynamics this relates to Couette flow be- 
tween parallel plates and coaxial cylinders [I], in solid mechanics it relates 
to deformation of thin-walled tubular specimens [2], and in the mechanics of 
loose materials it relates to uniform shear of the material [3]. Construction 
of sufficiently general phenomenological models assumes an experimental study 
of different loading paths, including composite loading paths when the stress 
tensor axes are turned relative to the volume of the material. Composite load- 
ing of metals, rocks, and other solids may be realized by a combination of in- 
ternal pressure, torsion, and tension for tubular specimens. However, for a 
broad class of materials this classic procedure is either markedly complicated 
(e.g., for soils [4]), or it is generally inapplicable. It is of interest to 
find a class of composite loads which on one hand might relate to the simplest, 
and on the other might be used in order to test loose, viscoelastoplastic, and 
other similar materials. 

i. As is well known, a uniform stress-strained state is the simplest. Let a material 
in the fixed direction be subjected to uniform tensile deformation AE I = kAt, and in the 
orthogonal direction to compressive deformation so that the volume is unchanged; As 2 = -kAt. 
Then after time At the same uniform deformation is accomplished in new fixed directions 
turned relative to the previous directions by angle -~At, etc. Deformation is planar, ~ and 
k are positive constants. 

In order to derive equations, we consider a discrete sequence of these uniform load- 
ings. Let Ox1'x 2' be the initial Cartesian coordinate system, and ~ the angle between the 
tensile direction Ox I and axis Ox I' (Fig. I). On coordinate Oxlx = the vector for increment 

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 
5, pp. 150-158, September-October, 1986. Original article submitted July 2, 1985. 

772 0021-8944/86/2705-0772512.50 �9 1987 Plenum Publishing Corporation 



~5--- k 

\ ..,,T2 3~2 , 

~2r% 

Fig. 1 

' and 0x 2' and changing of displacements is {kx1At, -kx2At }. By projecting it onto axes Ox l 
over to variables x I' and x2', we obtain 

a.'1 = k(cos 2 x', + ( 1 . 1 )  

+ s i .  2 x;) at ,  A.'2 = 

= k ( s i .  2 z; - cos at .  

We b r e a k  down t h e  t i m e  i n t e r v a l s  f r o m  t t o  t~  i n t o  i n t e r v a l s  o f  l e n g t h  5 t ,  we a s s u m e  
d i s c r e t e  v a l u e  ~ = - ~ ] t ,  and  we sum d i s p l a c e m e n t s  ( 1 . 1 )  w i t h  At + O, t z + t .  As a r e s u l t  
o f  t h i s  we h a v e  a s y s t e m  

v l  dx ' l / d t  = k (cos ~ ' - -  9 ' ' = . f ~ t x l  sin 2Qtx2) ,  ( 1 . 2 )  

' ' = - -  " 9 ' 9 ' v~ = d x ~ / d t  k (snl  - f~ t x l  + cos -Q tx2 ) ,  

' Now it may where v I' and v 2' are velocities of the material point on coordinates 0xl'x 2 . 
be assumed that the system Ox~x 2 rotates continuously with angular velocity -~ relative to 
the original system. Equations (1.2) make it possible to determine the velocity at coordi- 
nates Ox~x 2: 

v,  = dx~/dt = --~]x 2 -~ kx l ;  ~:., - -  dx . jd t  =: Qx  1 - -  kx~. ( 1 . 3 )  

The nature of solution (1.3) depends on the ratio of tensile and rotational velocities. With 
k<~ 

x l =  - f - a l - - ~  a'- s i n ~ t  + a l c ~  ( 1 . 4 )  

( ~ -  k ) s i n E t  + a2 cosE t .  x 2 ~ a 1 - -  ~ ( t 2  

Here % = r - k2; al and a 2 are coordinates at instant t o . If k ~ ~ then the paths are 
not closed and they merge at infinity. In this situation the possibility of this behavior 
at first glance appears paradoxical. However, it has a simple mechanical sense. On polar 
coordinates (r, a) system (1.3) is transformed to 

d In r /dt  - -  k cos 2a,  d a / d t  = Q - - k  sin 2a. 

This last equation indicates that the angular velocity of rotation for a material point around 
the center depends not only on the rotational velocity ~, but also on tensile velocity k. 
With k ~ ~ the radius is found at which the rotational velocity is zero. The point cannot 
surmount this radius, and as a result of continuous tension it emerges at infinity. Below 
we limit ourselves only to the first case when k < ~. In this way according to (1.4) each 
point moves through a closed elliptical path having a compression coefficient /(~ - k)/(~ + 
k). The major axis of the ellipse is directed along bisectrix x I = x 2. The period of rota- 
tion for all of the points is the same and equals 2v/l; i.e., it is always greater than 
2~/~. The rule for rotation exhibits one feature: the vector derivative of velocity v at 
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radius-vector r for all of the points in the overall elliptical path is constant and inde- 
pendent of k. In other words, with movement around the center the radius-vector of the point 
for the same time covers the same areas S. For example, for points ax= i and as = 0 with 
all t 

IvXrl  = ~ = C o a s t ,  (v.n)  = 0, ( 1 . 5 )  

where  n i s  n o r m a l  t o  t h e  p a t h .  

R e s u l t s  ( 1 . 4 )  and ( 1 . 5 )  we re  o b t a i n e d  by p r o c e e d i n g  o n l y  f rom t h e  r e q u i r e m e n t  f o r  u n i -  
f o r m i t y  o f  s o l i d  d e f o r m a t i o n .  L o a d i n g  i s  q u a s i s t a t i c ,  and i n e r t i a  f o r c e s  a r e  a b s e n t .  The 
r e a s o n  f o r  movement  o f  m a t e r i a l  e l e m e n t s  i s  t h e i r  r e a c t i o n ,  which  l e a d s  t o  d e v e l o p m e n t  o f  
i n t e r n a l  s t r e s s e s  and t r a n s m i s s i o n  o f  i n f o r m a t i o n  a b o u t  b o u n d a r y  d i s p l a c e m e n t s  w i t h i n  t h e  
r e g i o n .  The q u a s i s t a t i c  p r o b l e m  f o r  f l o w  o f  a s o l i d  may be s t a t e d  in  a c c o r d a n c e  w i t h  t h e  
dynamic  p r o b l e m  f o r  movement  o f  a m a t e r i a l  p o i n t .  L e t  a t  a c e r t a i n  i n s t a n t  o f  t i m e  a l l  o f  
t h e  bonds  b r e a k  down b e t w e e n  t h e  m a t e r i a l  e l e m e n t s  and i n s t e a d  o f  them an e q u i v a l e n t  f o r c e  
f i e l d  d e v e l o p s  wh ich  f o r  any  i n d i v i d u a l  p a r t i c l e  now p r o v i d e s  t h e  same movement  as  in  t h e  
solid. We determine the equivalent field for flow (1.3). From (1.3) it follows that 

d 2 x l / d t  2 = . -  (Q~ _ k 2 ) z l ,  d ~ z 2 / d t  2 = _ ( ~ 2  _ k 2 ) x 2 .  

Thus ,  a c e n t r a l  f o r c e  f i e l d  w i t h  a p o t e n t i a l  p r o p o r t i o n a l  t o  r 2 c o r r e s p o n d s  t o  s i m u l t a n e o u s  
d e f o r m a t i o n  w i t h  c o n t i n u o u s  r o t a t i o n  o f  t h e  a x e s .  I n  t h i s  l a n g u a g e  p r o p e r t y  ( 1 . 5 )  i s  t h e  
w e l l - k n o w n  c o n s e q u e n c e  o f  a c e n t r a l  f o r c e  f i e l d  [ 6 ] .  

2. The s i m u l t a n e o u s  p r o c e s s  i s  c h a r a c t e r i z e d  by c o n d i t i o n s  ( 1 . 5 ) .  How t o  r e a l i z e  s i m i l a r  
l o a d i n g ?  S i n c e  m a t e r i a l  p o i n t s  move t h r o u g h  a c l o s e d  e l l i p t i c a l  p a t h ,  f o r  i t s  r e a l i z a t i o n  
i t  i s  n e c e s s a r y  t o  s e p a r a t e  t h e  e l l i p t i c a l  r e g i o n ,  and a t  t h e  b o u n d a r y  t o  p r e s c r i b e  a v e l o -  
c i t y  v e c t o r  d i r e c t e d  a l o n g  a t a n g e n t  t o  t h e  b o u n d a r y .  The v a l u e  o f  t h e  v e l o c i t y  s h o u l d  c h a n g e  
by r u l e  ( 1 . 5 ) .  T e c h n i c a l l y  i t  i s  q u i t e  c o m p l i c a t e d  t o  a c c o m p l i s h  t h i s .  I t  i s  s i m p l e r  t o  
r e t a i n  o n l y  t h e  b a s i c  f e a t u r e s  o f  t h e  s i m p l e s t  u n i f o r m  s i t u a t i o n  ( t r a n s f o r m a t i o n  o f  t h e  e l -  
l i p t i c a l  r e g i o n  i n t o  i t s e l f ) ,  and t o  p r e s c r i b e  t h e  l i n e a r  v e l o c i t y  as  c o n s t a n t .  T h i s  p r o c e s s  
may be r e a l i z e d  as  f o l l o w s .  We p l a c e  t h e  m a t e r i a l  s p e c i m e n  in  a r i g h t  e l l i p t i c a l  c y l i n d e r  
bounded by a f l e x i b l e  s h e a t h .  The l o a d i n g  d e v i c e  i s  made in  t h e  fo rm o f  a r i g i d  v e r t i c a l  
c y l i n d e r  w i t h i n  whose i n t e r n a l  p l a n e  t h e  f l e x i b l e  s h e a t h  w i t h  t h e  s p e c i m e n  i s  p l a c e d .  Load-  
ing  i s  c a r r i e d  o u t  by r e l a t i v e  r o t a t i o n  o f  t h e  o u t e r  c y l i n d e r  and t h e  s h e a t h  ( F i g .  2 a ) .  T h i s  
method may be g e n e r a l i z e d  in  a w i d e r  c l a s s  o f  r e g i o n s :  a f i g u r e  o f  c o n s t a n t  d i a m e t e r ,  d i f f e r -  
e n t  o v a l s ,  e t c .  

S u b s t i t u t i o n  o f  b o u n d a r y  c o n d i t i o n s  ( 1 . 5 )  by 

[vi = v0 = eonst~ (v.n) = 0 ( 2 . 1 )  

g e n e r a t e s  a number  o f  q u e s t i o n s .  F i r s t ,  how i n f o r m a l l y  t o  p r e s e n t  d e f o r m a t i o n  c h a r a c t e r  
( 2 . 1 ) ?  For  t h i s  we u s e  t h e  f o l l o w i n g  e x a m p l e .  L e t  r and r~ be  c o n f i g u r a t i o n  o f  t h e  b o u n d a r y  
a t  i n s t a n t s  t and t + ~, and D and D~ be t h e  c o r r e s p o n d i n g  r e g i o n s .  S i n c e  a t  t h e  b o u n d a r y  
d i s p l a c e m e n t s  ( v e l o c i t i e s )  a r e  p r e s c r i b e d ,  t h e n  F and r~ a r e  known. We combine  b o t h  con -  
f i g u r a t i o n s .  I n  t h e  g e n e r a l  c a s e  w i t h  s u p e r i m p o s i t i o n  t h r e e  t y p e s  o f  r e g i o n  d e v e l o p :  D O = 
D N D<, D- = D\D ~ and D + = D ~ \  D O . Rough ly  s p e a k i n g ,  t h e  r e s u l t i n g  d e f o r m a t i o n  f rom t t o  
t + ~ i s  r e d u c e d  t o  t h e  s i t u a t i o n  t h a t  f rom D a r e g i o n  o f  n o n c o n f o r m i t y  D- i s  r emoved  and a 
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region D + is added. Therefore, their position and form makes it possible before solution 
of the problem to determine qualitatively the nature of the process as a whole and to give 
an integral estimate of deformation as the ratio of the areas D +UD- to D. Here a situation 
arises. As a rule, displacements at the boundary are prescribed from expressions of con- 
venience for describing loading-device kinematics. Therefore, these displacements may con- 
tain attendant components relating to rigid transfer and rotation of the body being deformed. 
It is necessary to exclude them. We limit ourselves to problem (2.1) with small times ~. 
We substitute boundary displacements u I and u 2 by w I = u I - Awxi, w 2 = u 2 + A~x I. Constant 
&m is determined from the condition 

.J_l ( ~ W •  
L .'7" r 2" 

F 

where  L i s  b o u n d a r y  l e n g t h .  D i s p l a c e m e n t s  w~ and w 2 may be u s e d  in  o r d e r  t o  p l o t  t h e  r e g i o n  
o f  n o n c o n f o r m i t y  f o r  D +, D-.  I t  can  be s e e n  ( F i g .  2b)  t h a t  t h e i r  l o c a t i o n  i s  such  t h a t  on 
t h e  who le  t h e  s p e c i m e n  i s  e x t e n d e d  a l o n g  t h e  d i r e c t i o n  x = - y  and c o m p r e s s e d  a l o n g  t h e  o r t h -  
o g o n a l  d i r e c t i o n  x = y ( c f .  F i g .  1 ) .  

I n  a more d e t a i l e d  s t u d y  i t  i s  more c o n v e n i e n t  t o  p r o c e e d  f rom b o u n d a r y  c o n d i t i o n s  ( 2 . 1 )  
a l t h o u g h  t h e y  c o n t a i n  i m p l i c i t l y  r i g i d  r o t a t i o n .  T h i s  i s  c o n n e c t e d  w i t h  t h e  f a c t  t h a t  in  
( 2 . 1 )  t h e  b o u n d a r y  does  n o t  change  and v e l o c i t i e s  a t  i t  do n o t  depend  on t i m e .  T h e r e f o r e ,  
for a broad class of materials the field of velocities and stresses within the region emerges 
into a steady regime. Apart from direct experimental verification for steadiness it is possible 
to use the following criterion. We subject some material samples to periodic loading for 
deformation. If after a certain number of cycles stressed in the sample cease to depend 
on its original condition (i.e., memory about the original form wears away) and a dependence 
is only retained on the phase within the cycle, then the material may be referred to the 
class indicated above. 

Let flow (2.1) be steady. As a result of symmetry a material element at the center 
does not experience transfer, and this means also expansion. Principal directions of the 
tensor for deformation velocities, velocity of tension and compression along the principal 
axes, and also rotational velocity will be unknown. This means that the central element 
is under the "ideal" conditions described above for composite loading with continuous rota- 
tion of the axes. 

The arrangement of model and rheometric experiments assumes recording of actual data 
for stress tensors, deformations, and their velocities. In studying composite loading the 
main question is about coaxiality or the degree of difference for tensors. First we con- 
sider a method for determining the deformation tensor component. In this situation there 
is no basis for assuming rotation and deformation to be small. In order to describe large 
deformations different measures, as is well known, are used connected with analyzing the 
change in distance between pairs of close points [7]. Another approach is also possible 
when attention is concentrated not on relative displacements of points but on transforming 
some small regions as a whole without "resolving" into displacements for individual points 
belonging to this region. 

Let a i and xi be Lagrangian and Euler coordinates of the point, and ui be displacement 
vector components: 

x~ = a f +  ui(aj, t), i, ] = 1,2. ( 2 . 2 )  

We fix with t = 0 all of the material points within a circle with radius ~ and center a i = 
ai~ The value of e may be assumed to be small, but we shall not impose any such limita- 
tions on derivatives 8ui/3aj = ui,j. During deformation the circle changes into an ellipse: 

E 2 ( I + 2 E 2 2 ) y ~ - - 4 E 1 2 y l g 2 + ( I + 2  11)Y~=5 ~, ( 2 . 3 )  

whore 

- - a i - - u i ( a ~ , t ) ] / s ;  E l l = u l , l + ( u ~ , , + u a , ~ ) / 2 ;  E2~=u~,~ + 
2 

+ (u~,, + u, ,2)/2;  2E,.. Ul, 2 ~- U2,1 ~- UI,lU2,1"~ - Ut,2U2,2; 

.5 = i + u m + u.,.,~ + u m u , , , 2 -  ul,2u~,l: 
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It is easy to demonstrate that 6 is invariant, and Eij are second-rank tensor components of 
E. The tensor for deformations E actually coincides with the Finger tensor [8], and it is 
distinguished from the Green tensor with substitution of derivatives 8ui/Saj by 8uj/Sa_.. 
The mechanical meaning of invariant 6 and component E is determined by equality (2.3). • The 
principal directions of the tensor coincide with axes of an ellipse into which the surround- 
ings of the point are transformed representing a ring: 

tg 2~ = 2EI~/(Eu - -  E~) .  ( 2 . 4 )  

Here  a i s  t h e  a n g l e  be tween  t h e  p r i n c i p a l  d i r e c t i o n s  and t h e  Oxl a x i s .  

For  t h e  second  l i m i t i n g  c a s e ,  when as a " v i c i n i t y "  s e c t i o n  a 1 = a l ~  + p cos  B0, a 2 = 
a2 ~ + p s i n  60, [Pl < g i s  t a k e n ,  r e l a t i o n s h i p  ( 2 . 2 )  l e a d s  t o  an e q u a t i o n  f o r  t h e  a n g l e  o f  
r o t a t i o n  

u~, 1 @'(%,~ - -  u u )  tg ~o --  u*,z tg2 ~0 
tg  (~ - -  ~o) = 

(~ + %0 + (u~,~ + ~,~) ,g ~o + (~ + ~,~) tg~ ~o 

Tensor E makes it possible to follow directly the nature of material deformation during load- 
ing of a body. For example, for flow (1.4), tan2~ = (~/%)tan%t, 6 ~ I, and the semiaxis 
of the ellipse referred to the radius of the original circle is i _+ (k/~)sinfit. Here, in 
order to shorten the record, it is assumed that k << S. 

From determination of (2.3) a method follows for experimental measurement of component 
Eij. We mark in the initial instant of time all of the points within a quite small circle. 
We shall fix parameters of the ellipse into which the circle is transformed during loading 
of the body. Equation (2.3) makes it possible from these data to set components Eij. Above, 
tensor E was introduced in view of the fact that measurements of the ellipse parameters is 
carried out more simply than relative displacements of adjacent points. For the central 
element measurements confirm fulfillment of equality (1.4), and in addition they make it 
possible to determine the rotational velocity, magnitude, and principal direction of the 
tensor for deformation velocity ~i in flow (2,1). 

We move onto the question of stresses. We place at the center of the specimen floating 
sensors for normal and tangential stresses. The sensors measured stresses between one and 
the same material particles. In a steady regime corresponding diagrams are periodic over 
time. Sensor orientation, which corresponds to the extreme of normals or a zero value of 
tangential components, determines the principal direction of stress tensor o I. From the 
ratio of directions for o I and ~i it is possible to assess the degree of tensor coaxiality. 

Thus, loading scheme (2.1) makes it possible to substitute completely homogeneous scheme 
(1.5). In addition, an effect is detected which is of independent interest. It is assumed 
that between the sheath and the material attachment is provided (this condition is not the 
principal one). According to (2.1) after time L/v0 all of the boundary points complete an 
entire revolution and they return to their original position. It is evident that in an elas- 
tic specimen all of the internal points also return to their original position. For a broad 
class of inelastic materials this is not so; in one cycle internal points describe almost 
closed paths, but they do not return to the original position. This leads to the situation 
that with an increase in the number of cycles "residual" displacements accumulate. From 
the point of view of an observer connected with particles at the boundary, the process appears 
as directional transfer of material elements within a region (Fig. 3, dry sand; in the original 
condition, half of the specimen was colored black). The effect of directional transfer was 
observed for viscous liquids, loose, plastic, and a series of other materials exhibiting 
more complex rheology. The main features of this process may be followed in a model of a 
Newtonian viscous liquid. The problem is reduced to solution of stationary Navier-Stokes 
equations 

I op  ou Ou ( 2 . 5 )  
vAu o ox = u ~ + v ~ , :  

I Op Ov Ov d u +  dv 
ray  p o~ = u "Y'fz + v.-~y , dx - ~  = O, 

within a region x2/(l + m) 2 + y2/(l - m) 2 ! i on condition that at the boundary both velo- 
city components v = {u, v} are prescribed satisfying equality (2.1), where v 0 = i (see Fig. 
2a). Here standard notations are used: x and y are Cartesian coordinates; 9 is viscosity; 
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Fig. 3 

Fig. 4 

p and p are density and pressure; A is Laplace operator. We confine ourselves to the case 
of high viscosity (Reynolds number Re << i) and small eccentricities (m << i). The system 
is reduced by the small parameter method to a sequence of biharmonic equations relating to 
terms of resolution for flow functions. By using the scheme in [9], we obtain 

(7  7 ~ 9y5_ u = - - y + r a ( - - 3 y + 2 y  3 ) + m  "~ Y + 7  y - - q -  

: x~y + - ~  ~ y ~  + q-- ~ u) + - ~  . - -  y - ~ - --g- y + 

5 y7 t65 x2y3 t65x4 105 x~y5 35 ) 
+ Y +'--4 - - - ~ -  Y - - T  + ' - (  x6y + 

+ Ri-~e6----~m (x --  2x 3 § x 5 - -  6xy ~ + 5xy  4 + 6x3y2), 

( + 7 ' 3  9x5 . ~ . v = x + m ( - - 3 x + 2 x  3 ) + r M  - -  x - -  - y  x + -T + xY2 - -  

) 2 --- '-4-x!t a + m  3 -- - - y x  + T x  

t65 a 2 t65 ~ t05 ~ ~ 35 (~'~ Re rn 
+ T x y  - - - g - X y  - - - - 4 - x y ' +  -T-xy  ) + -i-if-(-- y + 2ya- -  

- -  y~ + 6x2y - -  5x4y - -  6X2ya). 

( 2 . 6 )  

Particle transfer and the nature of material deformation were determined by numerical 
integration* of a set of normal differential equations 

dx/dt = u(x, y), dy/dt = v(x, y). (2.7) 

*Experiments and numerical calculations were carried out together with A. P. Bobryakov and 
V. I. Kramarenko. 
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Calculations showed that particles move around a center along a closed path. However, the 
period of rotation in different paths varies. Shown in Fig. 4 are the paths and positions 
of particles located at first on the major axis of an ellipse (m = 0.2). A difference in 
periods leads to the situation that internal deformation with increasing time grows without 
limit. This increase occurs under conditions when external deformations are small (of the 
order of m). For example, regions initially close to a semicircle during deformation take 
on a spiral shape (see Figs. 3 and 4). With an increase in the numberof cycles they twist 
more around the center and at the limit they degenerate into two infinitely thin and long 
spirals which are placed one to the~other so that by successively alternating they fill as 
a whole the original two-dimensional region. 

For viscous liquids the role of small parameters m and Re is different in development 
of flow; parameter m enters into series (2.6) without coefficient Re, but Re only figures 
in derivatives with m. Therefore, the role of the latter in forming "residual" displacements 
on a background of parameter m is insignificant. In addition, if we move over to the limit 
Re ~ 0 (~ + ~), then flow kinematics compared with variant Re << I are almost unchanged, 
even quantitatively. 

Furthermore, the limiting solution Re = 0 is the actual solution of the following linear 
elastic problem: displacement at the boundary of an elliptical region equals v0At and is 
directed through a tangent to the boundary, but displacement within the region is u(x, y)At, 
v(x, y)At, where At is as small a parameter as you like. We take a new step for the load- 
ing parameter, i.e., we prescribe anew increments of boundary displacements v0At directed 
along the boundaries. Since the outline of the boundary after the first step is unchanged, 
and in addition all of the deformations and rotations are small (of the order of At), then 
for a new step the temptation arises to use the previous solution. Then the resulting dis- 
placement of the point (al, a 2) should equal 

{~(ai)At - i -u(al-+-~(aj)At ,  a 2 -~- l,(a~)At)At, 

v(a~)At ~- v(a l -7 u(ai)At, as -I- v(ai)At)At} 

e t c .  By summing a s u f f i c i e n t  number o f  s t e p s  f rom t = 0 t o  t and d i r e c t i n g  At t oward  z e r o ,  
we f i n d  t h a t  t h e  f i e l d  o f  e l a s t i c  d i s p l a c e m e n t s  s h o u l d  be d e t e r m i n e d  by i n t e g r a t i n g  s y s t e m s  
(2.6) and (2.7) with Re ~ 0 and initial conditions u ~ v ~ 0. However, integration leads 
to a situation that with t = L/v 0 internal points of the body in the original condition do 
not return. The result obtained may be considered as an example indicating that solution 
of the geometrically nonlinear problem cannot be reduced to summing stepwise linear solu- 
tions even under conditions when the boundary of the region is always unchanged, and steps 
for the loading parameter, and also the corresponding deformations and rotations, are ex- 
ceedingly small. In 'the general case this question was studied in [i0]. 

On the other hand, correct statement and numerical realization of the stepwise solu- 
tion should lead to the situation that "residual" displacements for a whole cycle will equal 
zero. This fact may be used as a test for checking equations, algorithms, and numerical 
solution programs for elastic geometrically nonlinear problems. This test relates to an 
essentially two-dimensional arrangement, and large rotations and deformations (if parameter 
m is not small). In the problem for an elliptical region with boundary conditions (1.5) 
considerable information is known; apart from absence of "residual" displacements the dis- 
tribution of strains and stresses should be homogeneous (excluding the case when the ma- 
terial is unstable and bifurcation is possible). These facts may also be taken as tests 
for inelastic arrangements. 

Thus, the procedure and method considered for realizing composite loads may be used 
in order to study loose, viscoelastoplastic, and other materials for which the classical 
procedure of testing thin-walled tubular specimens [ii] is inapplicable. Solutions for el- 
liptical regions with boundary conditions (1.5) or (2.1) are tests for checking numerical 
algorithms and the statement of geometrically nonlinear problems. For a broad class of in- 
elastic materials an effect of differential rotation or directional transfer is detected 
which is also of interest for a number of technical applications [12, 13]. The composite 
loading process described may be interpreted as a model of the earth's deformation under 
the action of tidal forces. In this case, the effect of differential rotation means the 
possibility of a global mechanism of transfer of the earth's mass and its liquid core as 
a result of the motion of tidal waves [14]. 
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NONLINEAR WAVES IN A MAXWELLIAN MEDIUM 

A. I. Malkin and N. N. Myagkov UDC 534.2+539.374 

The study of propagation of nonstationary nonlinear waves in processes of explosive 
or shock deformation of metals involves substantial mathematical difficulties and requires, 
as a rule, a large expense in computer time. In many practical applications the waves gener- 
ated in the metal during explosion and shock can be assumed to be weak in the sense of small- 
ness of the relative variation of the material density in the wave [i]. Therefore it is 
of substantial interest to develop approximate methods of analyzing nonlinear waves, based 
on expanding the solutions in a small given parameter. 

To solve nonlinear wave problems in hydrodynamics and elasticity theory it is presently 
common to develop asymptotic multiple scale methods (MSM) [2-5], making it possible to find 
uniformly suitable approximations to the solution of the original complex system of equations 
on some large time interval. The necessity of accounting for strength effects in metals 
upon explosive deformation or shocks with moderate velocities requires the extension of MSM 
to more complicated systems of equations, describing, for example, the behavior of a Maxwel- 
lian medium [6], which is elastic for small strains, and flows for sufficiently large ones. 
However, the application of MSM to wave problems in such media is not a formal procedure. 
This is related to the stress dependence of the kinetic characteristics of the medium (for 
example, the relaxation time of tangential stresses) in the region of the elastoplastic transi- 
tion. The latter prevents direct expansion of elastoviscous terms, corresponding to the 
kinetics, in a series in the small parameter s (characterizing the relative variation of 
the material density in the wave) from the initial condition. 
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